A More Efficient Path-Finding Algorithm

Shree Murthy and J.J. Garcia-Luna-Aceves*
Baskin Center for
Computer Engineering and Information Sciences
University of California

Santa Cruz, CA 95064

Abstract

In this paper, we present a new routing algorithm,
which we call path-finding algorithm (PFA). It drasti-
cally reduces the possibility of temporary routing loops,
which accounts for its fast convergence properties.
Like other path-finding algorithms, PFA operates by
specifying the second-to-last hop to each destination,
wn addition to the distance to the destination. A de-
tailed proof of correctness and complexity is presented
elsewhere. PFA’s performance ts compared quantita-
tively by simulation with DUAL (a loop-free routing
algorithm) and an ideal link-state algorithm (ILS). A
number of parameters, including the length of the mes-
sages and the number of steps required for convergence,
are used in the comparison. The simulation results in-
dicate that PFA constitutes a very efficient distance-
vector algorithm. It provides about 50% improvement
in performance compared to DUAL in terms of the
convergence time and the number of updates after sin-
gle link failures, and provides comparable or better con-
vergence speed and traffic overhead than ILS, with or-
ders of magnitude fewer CPU cycles.

1 Introduction

Routing in today’s computer networks and Internet
is accomplished by distributed shortest-path routing
algorithms. The distributed Bellman-Ford (DBF) al-
gorithm [1] has been used in many well known routing
protocols. However, DBF takes a long time to con-
verge after link failure or link-cost changes because of
bouncing effect and counting-to-infinity problem [5].
Path-finding algorithms can be an attractive alter-
native to DBF for distributed routing as they elimi-
nate counting-to-infinity problem. However, the path-
finding algorithms proposed in the past incur substan-
tial temporary loops in the paths specified by the pre-
decessor information before they converge, which leads
to slower convergence.

This paper presents a new algorithm, simply called
path finding algorithm (PFA), that substantially re-
duces the number of cases in which routing loops can
occur. Its performance is compared with the perfor-
mance of an ideal topology broadcast (or link state)

*This work was supported in part by the Office of Naval
Research under Contract No. N-00014-92-J-1807 and by the
Advanced Research Projects Agency (ARPA) under contract
F19628-93-C-0175

algorithm and DUAL, which has been shown to be
a very efficient distance-vector algorithm. The main
feature of PFA is the notion of predecessor or second-
to-last hop. Using this information, each node can in-
fer the path implicit in a distance-table entry without
excessive overhead. Each node maintains the shortest-
path spanning tree reported by its neighbors, and uses
this information and the information regarding the
cost of the adjacent links to generate its own shortest-
path spanning trees. The fact that PFA reduces tem-
porary looping accounts for its superior performance
over DUAL and the ideal link state algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 presents the network model assumed in PFA
and introduces the notation used throughout this pa-
per. Section 3 provides the description of PFA along
with an example illustrating key aspects of its oper-
ation. Section 4 presents simulation results showing
that PFA constitutes an attractive alternative for the
implementation of routing protocols that rely on the
exchange of vectors of distances. Finally, Section 5
presents our conclusions.

2 Network Model

We have modeled a computer network as an undi-
rected graph represented as G(V, E), where V is the
set of nodes and F is the set of links (or edges) con-
necting the nodes. Each node represents a router and
is a computing unit involving a processor, local mem-
ory and input and output queues with unlimited ca-
pacity. A functional bidirectional link connecting the
nodes is assigned a positive weight in each direction.
A link is assumed to exist in both the directions at
the same time. All messages received (transmitted)
by a node are put in the input (output) queue on a
first-come-first-serve basis and are processed in that
order. An underlying protocol assumes that

e Every node knows its neighbors. This implies
that, within a finite time a node detects the exis-
tence of a new neighbor or the loss of connectivity
with a neighbor.

e All packets transmitted over an operational link
are received correctly and in the proper sequence
within a finite time.

o All update messages, changes in the link-cost, link
failures and link recoveries are processed one at a

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A More Efficient Path-Finding Algorithm £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Santa Cruz,Department of Computer REPORT NUMBER
Engineering,Santa Cruz,CA,95064

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 5
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Procedure Update(i, k)
when router i receives an update on link (i, k)
(0) begin
update=0; RTEMP' « ¢;
DTEMPHY « ¢ for all neighbors b
(1) for each triplet (7, D—);’,p—];) in VKi1 j # i do

(6) begin

Procedure Recover(i, k, d;)
when link (i, k) comes up do

insert column k in D;
respond as if a single entry in V5% = (k, d;p, 0)
is received on link (i, k)

begin copy whole routing table into DTEMP* and
8 Py 8
DY« dix + DK pt Pk send it to k
7 PR 7 4

(2) for all neighbors b en

if k is in the path from i to j in

the distance table through neighbor b Function In_Path(Node,Neighbor,Dest, neigh
i i k. 1 k g g
then Djb — Dkb + Dj PPy — p; begin
end Node

(3) begin
if there are b and j such that
i i i i — i),
(D}, < D) or (D}, > D%) and (b= 53));
then Call RT_-Update; end
end
(4) begin
if (RTEMP"' # ¢) then

for each neighbor b do begin
begin
for each triplet t = (j, D;,p;) in RTEMP' do bogin
if b is not in the path from i to j
then DTEMPHY « DTEMPHY U
send DTEMP"? to neighbor b;
end

end
end

Procedure Change(i, k, d;z)
when d;, changes value do
(7) begin
update the distance table entry at node i
i k. i k.
Djk — dyg +Dj"’jk Py
Go to Step (2);
end

Procedure Failure(i, k)
when link (i, k) fails do
(5) begin
delete column k in D;
if there is a destination j such that k = s;
then Call RT_Update;
Go to Step (4);

end

end

P Ppecst,neigh’

if (p = Node) then return(false);

else if (p = Neighbor) then return(true);
else In_Path(Node,Neighbor,p,neigh);

Procedure RT _Update

initialize all destinations to be unmarked;
for any unmarked destination j do

if there is no finite distance in row j
then mark j as undetermined;
else begin

TV « ¢;
pick any minimum distance D;b
c + p;b,TV — TV Uc
repeat ¢ = p!, , TV < TV Uc;
until Déb is not minimum of row
i i
corp!, =iorpl, is marked
if ((p!, is marked as undetermined) or
(D}, is not minimum of row c))
then mark each node in TV as undetermined
else begin
mark each node in TV as determined
D! « D' ;p® + p%, st « b;
J]b’P] P]b’ j 3
end
end

copy the routing vector to RTEMP" if the distance or
predecessor has changed

Figure 1: PFA Specification

time in the order in which they occur.

When a link fails, the corresponding distance entry
in a node’s distance and routing tables are marked as
infinity. A node failure is modeled as all links incident
on that node failing at the same time. A change in
the operational status of a link or a node is assumed
to be notified to its neighboring nodes within a finite
time. These services are assumed to be reliable and
are provided by lower level protocols.

Throughout the paper the following notations is used:

j: Destination node identifier j € N
b,k: Neighbor nodes
;k: Distance entry at node i to destination
j through neighbor k in the distance table
D;: Distance entry at node i to destination
j in the routing table
p;'»k Predecessor from i to j through % in the
distance table
pé-: Predecessor from i to j in the routing table
s Successor to destination j from a given

node in the routing table
dig: Link cost from ¢ to neighbor &
N;: Set of neighbors of @

3 PFA Description

Figure 1 defines PFA. PFA consists of procedures
used for topology changes (Failure, Recover, and
Change), path traversal (In_Path), updating the rout-
ing table (RT_Update) and a procedure to process up-
date messages (Update). The main feature of PFA is
the notion of second-to-last hop or predecessor. Using
predecessor information, each node can infer the path
implicit in a distance entry without excessive over-

head.

Each node maintains a distance table, a routing ta-
ble and a link-cost table. The distance table is a matrix
containing the distance and predecessor entries (path
information) for all the destinations through all its
neighbors. The routing table is a column vector of
minimum distance to each destination and its corre-
sponding predecessor and successor information. The
link-cost table lists the cost of each link adjacent to
the node; the cost of a failed link is considered to be
infinity. An update message contains the source and
the destination node identifiers, and the distance and
predecessor for one or more destinations.

When a node 7 receives an update message from
its neighbor k regarding destination j, the distance
and the predecessor entries in the distance table are
updated (Step 1). A unique feature of PFA is that,
node i also determines if the path to destination j

(0))

(infinity,-) (©)

Q)
b i
(2K)
_— 2K
k _—
(infinity,)
(b)

Q)

(10,)

(11,b) @

Figure 2: Example of the algorithm’s operation

through any of its other neighbors {b € N;|b # k}
includes node k. If the path implied by the predeces-
sor information reported by node b includes node k,
then the distance entry of that path is also updated
as D}, = Dy, + Df and the predecessor is updated
as pj, = p;?. Thus, a node can determine whether or

not an update received from k affects its other dis-
tance and routing table entries. Before updating the
routing table, node ¢ checks for all simple paths to j
reported by its neighbors, and the shortest of these
simple paths becomes the path from 7 to j (Procedure
RT_Update). This implies that at each stage, node
1 checks for the simple paths and avoids loops. Link
or node failures, recoveries and link-cost changes are

handled similarly (Steps (5), (6) and (7)).

In contrast to PFA, which makes a node i check
the consistency of predecessor information reported
by all its neighbors each time it processes an event
involving a neighbor &, all previous path-finding algo-
rithms [2, 3, 4] check the consistency of the predecessor
only for the neighbor associated with the input event.
This unique feature of PFA accounts for its fast con-
vergence after a single resource failure or recovery as
it eliminates more temporary looping situations than
previous path-finding algorithms.

The following example illustrates the working of the
algorithm. Consider the four node network shown in
Figure 2(a). Let PFA be used in this network. All
links and nodes are assumed to have the same propa-
gation delays. Link-costs are as indicated in the figure
and are assumed to be the same in both the directions.
Node i is the source, j is the destination and node k
and b are the neighbors of node 7. The arrows next to
links indicate the direction of updates messages and
the label in parentheses gives the distance and the
predecessor to destination j. The figure focuses on
update messages to destination j only.

When link (7, k) fails, nodes j and k send update
messages to their neighboring nodes as shown in Fig-
ure 2(b). In this example, node k is forced to report
an infinite distance to j as nodes b and 7 have reported
node k as part of their path to destination j. Node
b processes node k’s update and selects link (b, j) to
destination j. This is because of step(2) of the algo-
rithm which forces node b to purge any path to node
j involving node k. Also, when 7 gets node k’s update
message, ¢ updates its distance table entry through
neighbor & and checks for the possible paths to desti-
nation j through any other neighboring nodes. Thus,
a node examines the available paths through its other
neighboring nodes and updates the distance and the
routing table entries accordingly. This results in the
selection of the link (¢,j) to the destination j (Fig-
ure 2(c)). When node 7 receives b’s update reporting
an infinite distance, node ¢ does not have to update
its routing table as it already has correct path infor-
mation (Figure 2(d)). Similarly, updates sent by node
k reporting a distance of 11 to destination j will not
affect the path information of nodes ¢ and b. This il-
lustrates how step(2) of PFA helps in the reduction of
the formation of temporary loops in the explicit paths.

The proofs of correctness, convergence and com-
plexity of PFA are given elsewhere [6]. The worst-
case complexity of PFA has been found to be O(h) for
single recovery /failure, h being the height of the tree.

4 Simulation Results

To gain insight into the average-case performance
of the algorithms, we have developed simulations us-
ing an actor-based, discrete-event simulation language
called Drama [7], together with a network simulation
library. Link failures and recoveries are simulated by
sending link status message to the nodes at the end
points of the appropriate links. Node failures can be
treated as all links connecting to that node going down

Table 1: Simulation Results for Los-Nettos

Parameter PFA DUAL ILS
mean | sdev mean | sdev mean | sdev
[Link-Failure [
Event Count 45.77 17.9 49.9 18.6 29.0 5.8
Packet Count 13.5 6.01 32.6 11.8 27.0 5.8
Duration 2.86 0.74 6.7 1.33 4.2 0.88
Operation Count 62.4 18.03 69.9 18.6 724.1 27.3
I Link-Recovery [
Event Count 91.3 15.5 45.7 7.45 33.3 1.86
Packet Count 18.0 5.04 17.0 7.25 31.9 1.86
Duration 2.93 0.46 3.71 0.88 3.86 0.46
Operation Count 109.6 24.6 65.7 7.45 944.0 45.8
[Node-Faillure [
Event Count 135.6 79.5 73.0 25.4 31.8 9.6
Packet Count 39.8 175 45.5 3.26 26.7 7.19
Duration 5.82 2.85 6.91 0.99 4.09 0.51
Operation Count 195.0 112.2 123.9 50.2 702.9 204.3
[Node-Recovery [
Event Count 221.1 117.9 94.3 40.5 56.2 134
Packet Count 30.4 10.3 41.0 12.4 51.1 10.8
Duration 3.18 0.38 4.7 0.44 4.4 0.5
Operation Count 274.9 136.4 145.2 66.5 1698.8 478.4

at the same time and the link cost changes can be
treated as a link failing and recovering with a new link
cost. All simulations are done assuming unit propa-
gation time and zero packet processing time at each
node. If a link fails when packets are in transit, the
packets are dropped.

For simulating the routing algorithm, a node re-
ceives a packet and responds to it by running the rout-
ing algorithm and queueing the outgoing packets and
processing the updates one at a time in the order in
which they arrive. In our simulations, packet process-
ing time is kept as zero. Drama’s internals ensure that
all the packets at a given time are processed before new
updates are generated.

The performance of PFA has been compared with
DUAL and an ideal link state (ILS) algorithm which
uses Dijkstra’s shortest-path algorithm [1] at each
node. We have instrumented our simulations using
the following four quantities:

Events: total number of updates

Packets: total number of packets transmitted over
the network

Duration: total time elapsed for the algorithm to
converge

Operations: total number of operations performed
by the algorithm

Counters are used to instrument these quantities.
These counters can be reset at various points and the

values of these counters are printed when the algo-
rith)m converges (that is, when the event queue emp-
ties).

Simulation results are obtained for all single failures
and recoveries of links and nodes. The routing algo-
rithm was allowed to converge after each such change.
The simulations were run on several network topolo-
gies after a series of tests on smaller topologies for
debugging purposes. The results for link and node,
failure and recovery for Los-Nettos are presented in
Table 1. The results for other network topologies can
be found elsewhere [6].

PFA has a better overall average performance than
ILS after the recovery of a single node or link. The per-
formance of PFA is comparable to ILS after the failure
of a single node or a link. This is a remarkable im-
provement over DUAL which requires approximately
twice the number of steps to converge than ILS after
failures. For link failures, the operation count of PFA
is almost the same as that of DUAL with the duration
to converge being half that of DUAL. The number of
packets (messages) exchanged among nodes is almost
50% less than that of DUAL. However, the event count
and the operation count is about 2 to 3 times higher
than DUAL; the operations count of PFA is up to an
order of magnitude less than that of ILS.

5 Conclusion

In this paper, we have presented a new path-finding
algorithm, PFA | that reduces the occurrence of tem-
porary routing loops without the need for internodal
synchronization mechanism or the exchange of com-
plete path information. The performance of the al-

gorithm is compared with DUAL and an ideal link-
state algorithm quantitatively by simulation. In terms
of convergence time after link failures, PFA provides
about 50% improvement in performance as compared
to DUAL by exchanging lesser number of messages
than DUAL and its performance is comparable to that
of ILS. The worst-case complexity of the algorithm has
been shown (elsewhere) to be O(h), where, h is the
height of the tree.

References
[1] D. Bertsekas and R. Gallager, Data Networks, Sec-
ond Ed. Prentice Hall, Inc. 1992.

[2] C. Cheng, R. Reley, S. P. R Kumar and
J. J. Garcia-Luna-Aceves, “A Loop-Free Extended
Bellman-Ford Routing Protocol without Bouncing
Effect”, ACM Computer Communications Review,
19 (4), 1989, pp.224-236.

[3] P.A. Humblet, “Another Adaptive Shortest-Path
Algorithm”, IEEE Trans. Comm., Vol.39, No.6,
June 1991, pp.995-1003.

[4] B. Rajagopalan and M. Faiman, “A Respon-
sive Distributed Shortest-Path Routing Algorithm
within Autonomous Systems,” Journal of Inter-
networking: Research and Ezxperience, Vol. 2, No.
1, March 1991, pp. 51-69.

[5] M.S. Sloman and X. Andriopoulos, “A Rout-
ing Algorithm for Interconnected Local Area Net-
works”, Computer Networks and ISDN Systems,
1985, pp.109-130.

[6] Shree Murthy, “Design and Analysis of Distributed
Routing Algorithms”, Masters Thesis, University
of California, Santa Cruz, June 1994.

[7] W. T. Zaumen, “Simulations in Drama”, Net-
work Information System Center, SRI Interna-
tional, Menlo Park, California, January 1991.

